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o determine if the exaggerated morphine-induced conditioned place preference
(CPP) response seen in adult rats after preweanling methylphenidate exposure is unique to reward-mediated
behaviors or is indicative of generalized changes in opioid-mediated behaviors. Rats were exposed to saline
or methylphenidate (2.0 or 5.0 mg/kg) for 10 consecutive days starting on postnatal (PD) 11 with testing
beginning on PD 60. In Experiment 1, morphine-induced (0, 2.5, 5.0 or 10.0 mg/kg) antinociception was
assessed using the tail immersion and hot plate tasks. In Experiment 2, morphine-induced (0, 2.5, 5.0, or
10.0 mg/kg) hyperthermia and locomotor activity were measured. Morphine caused an increase in
antinociception, with early methylphenidate (5.0 mg/kg) exposure potentiating the effects of 5.0 mg/kg
morphine. Rectal temperatures were elevated after morphine, with the greatest increase occurring in male
rats. Methylphenidate potentiated the hyperthermic effects of morphine (10.0 mg/kg) but only in males.
Moderate doses (2.5 and 5.0 mg/kg) of morphine increased the locomotor activity of adult rats, while a
higher dose (10.0 mg/kg) decreased locomotion. Interestingly, methylphenidate-pretreated females showed
increased locomotor activity relative to controls. These results suggest that early methylphenidate exposure
induces general changes in opioid system functioning that are not specific to reward-mediated behaviors.

© 2008 Elsevier Inc. All rights reserved.
1. Introduction
Each year millions of school-aged children (i.e., 6–17 year olds)
who are diagnosed with attention deficit hyperactivity disorder are
effectively treated with psychostimulant medications, such as
methylphenidate, with limited adverse side effects (for reviews,
see Biederman and Faraone, 2005; Brown et al., 2005; CDC, 2005;
King et al., 2006). While repeated exposure to psychostimulants can
be addictive in adults, studies suggest that treating school-aged
children with methylphenidate does not increase the likelihood of
later illicit drug use andmay reduce the probability of substance abuse
disorder (Hechtman andGreenfield, 2003;Mannuzza et al., 2003, 2008;
Wilens et al., 2003; but see Lambert and Hartsough,1998). Increasingly,
methylphenidate is being used to treat a small but growing percentage
of preschool-aged children (i.e., 3–5 year olds), although very limited
information exists on the efficacy and safety of psychostimulant use in
this age group (Greenhill et al., 2008; Vaughan et al., 2008). The
available clinical trials, however, suggest there are age-dependent
differences in response to methylphenidate, with older children
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showing greater symptom reduction and fewer adverse effects than
preschool-aged children (Gleanson et al., 2007; Kratochvil et al., 2004).

A number of developmental animal studies have assessed the long-
term effects of early methylphenidate exposure on cocaine-rewarded
behavior (Achat-Mendes et al., 2003; Andersen et al., 2002; Brandon
et al., 2001; Carlezon et al., 2003). Interestingly, early methylpheni-
date exposure is consistently found to alter cocaine's reinforcing
potential; however, the reported effects are in opposing directions.
Specifically, one study found that early methylphenidate exposure
increased cocaine self-administration (Brandon et al., 2001), while
other studies reported that early methylphenidate exposure attenu-
ated cocaine-induced CPP (Achat-Mendes et al., 2003; Andersen et al.,
2002; Carlezon et al., 2003). While these studies vary in numerous
ways (e.g., self-administration versus CPP), age at methylphenidate
exposure may be an important factor influencing the reward value of
cocaine. Specifically, rats exposed to methylphenidate during adoles-
cence (PD 35–PD 42) showed a long-term increase in cocaine self-
administration (Brandon et al., 2001),whilemethylphenidate exposure
during preadolescence (PD 20–PD 35) decreased the later preference
for cocaine (Andersen et al., 2002; Carlezon et al., 2003). Thus, it is
possible that methylphenidate exposure differentially affects cocaine's
reward value depending on the age at which it is administered.

Because methylphenidate is being increasingly given to preschool-
aged children, we recently examined whether exposing rats to
methylphenidate during the preweanling period (PD 11–PD 20)
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would have long-term impact on reward system functioning.
Specifically, we found that methylphenidate exposure during the
preweanling period increased the reinforcement value of morphine
and sucrose in young adult rats (Crawford et al., 2007), while the
reinforcing properties of cocaine were unaltered (Crawford, unpub-
lished observations). Although the cause of these methylphenidate-
induced behavioral changes has not been determined, it is possible
that they are due to changes in opioid receptor sensitivity. Support for
this hypothesis is two-fold: (1) exposure to methylphenidate during
the preweanling period enhances the rewarding effects of morphine
but not cocaine (Crawford et al., 2007), and (2) repeated treatment
with psychostimulants (i.e., methamphetamine and cocaine) causes
an up-regulation of µ-opioid receptors and peptides (Chiu et al., 2006;
Hammer, 1989; Unterwald et al., 1992, 1994). Importantly, it is
uncertain whether methylphenidate's ability to alter µ-opioid func-
tioning is restricted to reward circuitry or is a general phenomenon
that impacts a variety of opioid-mediated behaviors. The goal of the
present study, therefore, was to determine whether exposing rats to
methylphenidate during the preweanling period would cause long-
term changes in the antinociceptive, hyperthermic, and locomotor
activating properties of morphine (the prototypical μ-opioid agonist).
We hypothesized that preweanling methylphenidate exposure would
alter opioid receptor sensitivity and increase morphine-induced
antinociception, hyperthermia, and locomotor activity.

2. Experimental procedures

2.1. Animals

Subjects were 535 (N=10–12) male and female rats of Sprague–
Dawley descent (Charles River), born and raised at California State
University, San Bernardino. Different groups of rats were used for each
experiment. Litters were culled to 10 pups (5 male and 5 female) at
3 days of age. The day of parturition was considered PD 0. Rats were
kept with their dam until PD 25, at which time they were weaned and
placed in group cages (2–3 rats per cage) with same-sex litter mates.
The colony roomwas maintained at 22–24 °C and kept under a 12-hr
light/dark cycle. Behavioral testing was done during the light cycle, at
approximately the same time each day. Subjects were treated
according to the “Guide for the Care and Use of Mammals in
Neuroscience and Behavioral Research” (National Research Council,
2003) under a research protocol approved by the Institutional Animal
Care and Use Committee of CSUSB.

2.2. Drugs

Methylphenidate hydrochloride and morphine sulfate salt were
obtained from Sigma-Aldrich (St. Louis, MO). Methylphenidate was
dissolved in saline and injected intraperitoneally (IP) at a volume of
5 ml/kg. Morphine was dissolved in saline and injected subcuta-
neously (SC) at a volume of 1 ml/kg. Drug doses were expressed in the
forms listed above.

2.3. In vivo drug treatment

Starting on PD 11, rats were injected with saline or methylpheni-
date (2.0 or 5.0 mg/kg, IP) for 10 consecutive days. This injection
period was chosen because this age span is roughly comparable to
early childhood in humans (Andersen, 2003, 2005; Andersen and
Navalta, 2004). After methylphenidate pretreatment, rats were left
undisturbed until behavioral testing.

2.4. Apparatus

A water bath (Model 182, Precision Scientific, Chicago, IL),
maintained at 52.0 °C (±1 °C), and a hot plate analgesia meter (IITC
Life Science Inc, Woodland Hills, CA), maintained at 54.0 °C (±0.1 °C),
were used to measure tail immersion and hot plate nociception.
Locomotor activity was assessed in activity monitoring chambers
(Coulbourn Instruments, Allentown, PA). The chambers
(41×41×41 cm) consisted of Plexiglas walls, a plastic floor, and an
open top. Each chamber included an X–Y photobeam array, with 16
photocells and detectors, which was used to determine distance
traveled. Rectal temperatures were assessed using a BAT-12 microp-
robe thermometer (Physitemp Instruments, Piscataway, NJ).

2.5. Experiment 1: tail immersion and hot plate procedure

On PD 60, tail immersion nociceptionwas assessed by holding rats
vertically over the heated water bath with their tails immersed (5 cm)
in the water. Latency (s) until tail-withdrawal was recorded. Hot plate
nociception was assessed by placing the rats on the heated plate and
latency to lick one of the hind paws or jumping (with all four paws
leaving the plate) was recorded. Paw-lick latencies were assessed
immediately after tail immersion testing. A cut-off time of 30 s was
used for both procedures to prevent tissue damage. Three baseline tail
immersion and hot plate trials were conducted for each rat with a
20-min interval between each trial. Immediately after the third
baseline trial, rats were injected with morphine (0, 2.5, 5.0, or
10.0 mg/kg, SC) and returned to their home cage for 20 min. Tail-
withdrawal and paw-lick latencies were then measured three
additional times, again with a 20-min interval between each trial.

2.6. Experiment 2: rectal temperature and locomotor activity procedure

Rectal temperatures and locomotor activity were assessed over a
two-day period. On PD 60 (i.e., the saline test day), rectal temperatures
were taken at the beginning of the testing session and rats were
immediately injected (SC) with saline and returned to their home
cages. After 20 min, rectal temperatures were recorded and rats were
placed into the locomotor activity chambers for 80 min. After
conclusion of locomotor activity testing (i.e., 100 min after initial
injection), rectal temperaturesweremeasured again. On PD61 (i.e., the
morphine test day), the same procedure was used with the exception
that rats were injected with morphine (0, 2.5, 5.0, or 10.0 mg/kg, SC)
instead of saline.

2.7. Statistics

Body weights during the drug pretreatment phase were analyzed
using a 2×3×10 (sex×pretreatment dose×day) repeated measures
analysis of variance (ANOVA). Body weights of adult rats were
analyzed using a 2×3 (sex×pretreatment dose) ANOVA. Baseline
latencies for the tail immersion and hot plate tasks (collapsed across
the three trials) were analyzed using separate 2×3 (sex×pretreatment
dose) ANOVAs. The percent of the maximal analgesic response
[defined as (test latency−baseline latency) / (cut-off time−baseline
latency)×100] was calculated for each rat on both nociception tasks,
with separate 2×3×4×3 (sex×pretreatment×post-treatment×time
block) repeated measures ANOVAs being used. Analgesic response did
not vary according to time block, so that factor was not included in the
final statistical analyses.

Basal rectal temperatures on PD 60 (the saline test day) were
collapsed across the three time points and analyzed using a 2×3
(sex×pretreatment dose) ANOVA. Rectal temperatures on PD 60 (the
morphine test day) were converted into difference scores (i.e., basal
temperatures [pre-morphine administration] were subtracted from
temperatures recorded 20 min and 100 min post-morphine admin-
istration). For clarity, the difference scores of the 0 mg/kg morphine
group were set at zero. Difference scores were analyzed by a
2×3×4×2 (sex×pretreatment×post-treatment×time) repeated mea-
sures ANOVA. Basal locomotor activity on PD 60 (the saline test day)



Fig. 2.Mean (±SE) paw-lick latencyofmorphine (0, 2.5, 5.0, or 10.0mg/kg, SC) treatedmale
and female rats (N=265) on the hot plate task (data expressed as % of maximal possible
effect). Rats were pretreatedwith saline ormethylphenidate (2.0 or 5.0mg/kg) from PD 11
to PD20 and testedwithmorphine on PD 60. Data in this figure are from the same animals
as presented in Fig. 1 and are collapsed across sex. aSignificantly different from rats
pretreated with saline or 2.0 mg/kg methylphenidate and given 5.0 mg/kg morphine.
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was assessed using a 2×3×16 (sex×pretreatment× time block)
repeated measures ANOVA; whereas, locomotor activity on PD 61
(the morphine test day) was analyzed using a 2×3×4×16 (sex×pre-
treatment×post-treatment×time block) repeated measures ANOVA.
For all analyses, significant higher-order interactions were further
analyzed using two- or one-way ANOVAs. Post hoc analysis was done
using Newman–Keuls tests (pb0.05).

3. Results

3.1. Body weight

On PD 11–20, male and female rats exhibited a progressive increase
in body weight [Day main effect, F9, 4770=626.94; pb0.001; Newman–
Keuls tests, pb0.05] that was not altered by methylphenidate
exposure (data not shown). Overall, male rat pups weighed signifi-
cantly more than female pups [Sex main effect, F1, 530=7.20; pb0.01],
with the differences between sexes not varying according to postnatal
day. Body weights of the methylphenidate- and saline-pretreated
rats did not differ on PD 60, although male rats (x =383 g, SE±2)
weighed significantly more than females (x =238 g, SE±1) [Sex main
effect, F1, 529=3687.62; pb0.001].

3.2. Nociception assays

3.2.1. Hot-plate task
Basal responsiveness to the hot plate was not altered by early

methylphenidate treatment, although male rats (x =12.66 s, SE±0.60)
had longer paw-lick latencies than female rats (x =9.93 s, SE±0.42)
[Sex main effect, F1, 259=7.40; pb0.001]. As expected, morphine
increased paw-lick latencies on the hotplate task (Fig. 1) [Post-
treatment main effect, F3, 241=88.89; pb0.001; Newman–Keuls tests,
pb0.05]. In male rats, morphine (2.5, 5.0 and 10.0 mg/kg) induced a
dose-dependent increase in paw-lick latencies, while only the two
higher doses of morphine significantly increased paw-lick latencies of
female rats [Post-treatment×Sex interaction, F3, 241=5.45; pb0.001;
Newman–Keuls tests, pb0.05]. Males treated with 5.0 or 10.0 mg/kg
morphine had longer paw-lick latencies than similarly treated female
rats, thereby suggesting that morphine induced a greater analgesic
response in male rats. Importantly, early methylphenidate (5.0 mg/kg)
exposure enhanced the analgesic effects of a submaximal dose of
Fig. 1. Mean (±SE) paw-lick latency of morphine (0, 2.5, 5.0, or 10.0 mg/kg, SC) treated
male and female rats (N=265) on the hot plate task (data expressed as % of maximal
possible effect). Rats were pretreated with saline or methylphenidate (2.0 or 5.0 mg/kg,
IP) from PD 11 to PD 20 and tested with morphine on PD 60. Data in this figure are
collapsed across the early methylphenidate exposure condition. aSignificantly different
from saline-treated rats of the same sex. bSignificantly different from similarly treated
male rats.
morphine (Fig. 2), because methylphenidate-pretreated male and
female rats injected with 5 mg/kg morphine had longer paw-lick
latencies than control rats given the same dose of morphine
[Pretreatment×Post-treatment interaction, F3, 241=2.77; pb0.05;
Newman–Keuls tests, pb0.05).

3.2.2. Tail immersion task
Similar to the hot-plate task, basal tail-withdrawal latencies were

longer for male rats (x =14.68 s, SE±0.73) than female rats (x =10.33 s,
SE±0.54) [Sex main effect, F1, 259=22.20; pb0.001], while basal
performance on the tail immersion task was not affected by early
methylphenidate treatment. Although all doses ofmorphine increased
the tail-withdrawal latencies of male and female rats [Sex main effect,
F1, 241=49.75; pb0.001], the analgesic effects of morphine were
more pronounced in males (Fig. 3) [Sex×Post-treatment interaction,
F3, 241=6.92; pb0.001]. Specifically, male rats injected with 2.5, 5.0,
or 10.0 mg/kg morphine exhibited significantly longer tail-
Fig. 3. Mean (±SE) tail-withdrawal latency of morphine (0, 2.5, 5.0, or 10.0 mg/kg, SC)
treated male and female rats (N=265) on the tail immersion task (data expressed as % of
maximal possible effect). Rats were pretreated with saline or methylphenidate (2.0 or
5.0 mg/kg) from PD 11 to PD 20 and tested with morphine on PD 60. Data in this figure
are collapsed across the early methylphenidate exposure condition. aSignificantly
different from saline-treated rats of the same sex. bSignificantly different from similarly
treated male rats.



Fig. 5. Mean (±SE) distance traveled of morphine (0, 2.5, 5.0, or 10.0 mg/kg, SC) treated
male and female rats (N=270). Activity testing lasted for 80 min. Rats were pretreated
with saline or methylphenidate (2.0 or 5.0 mg/kg) from PD 11 to PD 20 and tested with
morphine on PD 60. Data in this figure are collapsed across the early methylphenidate
exposure condition. aSignificantly different from female rats given the same dose of
morphine. bSignificantly different from similarly treated rats given 0 mg/kg morphine.
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withdrawal latencies than female rats treated with the identical doses
of morphine (Newman–Keuls tests, pb0.05). Methylphenidate pre-
treatment did not alter the analgesic response to morphine on the tail
immersion task.

3.3. Rectal temperature

OnPD60 (i.e., the saline test day), female rats (x =38.23 °C, SE±0.05)
had higher rectal temperatures than male rats (x =37.24 °C, SE±0.06)
[Sex main effect, F1, 264=158.61; pb0.001]. Basal rectal temperatures
were not altered by methylphenidate pretreatment.

On PD 61 (i.e., the morphine test day), rectal temperatures varied
according to time [Time main effect, F1, 246=264.83; pb0.001],
therefore data from the 20- and 100-min time points were analyzed
separately. When measured 20 min after morphine treatment, male
rats (x =+0.26 °C, SE±0.06) exhibited a greater absolute increase in
rectal temperatures than female rats (x =0 °C, SE±0.05) [Sex main
effect, F1, 246=5.32; pb0.05]. This sex difference was largely restricted
to the high-dose methylphenidate condition, because rectal tempera-
tures of rats pretreated with 5.0 mg/kg methylphenidate (x =+0.30 °C,
SE±0.06) were significantly greater than rats pretreated with 0 mg/kg
methylphenidate (x =+0.03 °C, SE±0.07) [Pretreatment main effect,
F2, 246=10.53; pb0.001; Newman–Keuls tests, pb0.05].

When assessed 100 min after morphine administration, a separate
ANOVA showed that saline-pretreated male rats given 5.0 mg/kg
morphine had a greater increase in rectal temperatures than saline
controls (upper graph, Fig. 4) [Post-treatment main effect, F3, 38=3.96;
pb0.05; Newman–Keuls tests, pb0.05]. Saline-pretreated female rats
given morphine also showed enhanced rectal temperatures, but this
effect was evident after 2.5, 5.0, and 10.0 mg/kg morphine (lower
Fig. 4. Mean (±SE) change in rectal temperature 100 min after male and female rats
(N=270) were treated with morphine (0, 2.5, 5.0, or 10.0 mg/kg, SC). Rats were
pretreated with saline or methylphenidate (2.0 or 5.0 mg/kg) from PD 11 to PD 20 and
injected with morphine on PD 60. aSignificantly different from similarly pretreated rats
given 0 mg/kg morphine. bSignificantly different from rats pretreated with saline and
treated with the 10.0 mg/kg morphine.
graph, Fig. 4) [Post-treatment main effect, F3, 43=4.43; pb0.01;
Newman–Keuls tests, pb0.05]. An omnibus ANOVA showed that
amongmale rats pretreatedwith 2.0methylphenidate only 10.0mg/kg
morphine increased rectal temperatures [Sex×Pretreatment×Post-
treatment interaction, F6, 246=2.22; pb0.05; Newman–Keuls tests,
pb0.05]. Likewise, among male rats pretreated with 5.0 mg/kg
methylphenidate both 5.0 and 10.0 mg/kg morphine increased rectal
temperatures (upper graph, Fig. 4). Interestingly, methylphenidate-
pretreated male rats injected with 10.0 mg/kg morphine had
significantly greater rectal temperatures than saline-pretreated rats
given the identical dose of morphine (compare the black bars in the
upper graph of Fig. 4). Post hoc analysis of the same omnibus ANOVA
showed that female rats pretreated with 2.0 mg/kg methylphenidate
and tested with 5.0 mg/kg morphine exhibited a greater increase in
rectal temperatures than controls pretreated with 2.0 mg/kg
methylphenidate (lower graph, Fig. 4) [Sex×Pretreatment×Post-
treatment interaction, F6, 246=2.22; pb0.05; Newman–Keuls tests,
pb0.05]. Among female rats pretreated with 5.0 mg/kg methylphe-
nidate, both 2.5 and 5.0 mg/kg morphine increased rectal tempera-
tures relative to controls.

3.4. Locomotor activity

On PD 60 (i.e., the saline test day), female rats (x =16,356 cm, SE±
834) had greater distance traveled values than males rats (x =
11,684 cm, SE±345) [Sex main effect, F1, 246=27.34; pb0.001].
Methylphenidate pretreatment did not alter locomotor activity on
the saline test day.

On PD 61 (i.e., themorphine test day), female rats again had greater
distance traveled values thanmale rats [Sex main effect, F1, 246=34.01;
pb0.001]: an effect that was evident after saline or morphine (5.0
or 10.0 mg/kg) treatment (Fig. 5) [Sex×Post-treatment interaction,
F3, 246=4.58; pb0.01; Newman–Keuls tests, pb0.05]. The two lower
doses of morphine (2.5 and 5.0 mg/kg) increased the distance traveled
values of female rats, while only 2.5 mg/kg morphine increased the
locomotion of male rats [Newman–Keuls tests, pb0.05]. The highest
dose of morphine (10.0 mg/kg) significantly decreased locomotor
activity in both males and females.

Methylphenidate pretreatment altered locomotor responsiveness
in only female, but not male, rats (Fig. 6). Specifically, female rats
pretreatedwith 2.0mg/kgmethylphenidate displayed greater distance
traveled values than saline-pretreated females on time blocks 1–5
[Sex×Pretreatment×Time Block interaction, F30, 3690=1.51; pb0.05;



Fig. 6. Mean (±SE) distance traveled of morphine (0, 2.5, 5.0, or 10.0 mg/kg, SC) treated
female rats (N=135). Activity testing lasted for 80 min. Rats were pretreated with saline
ormethylphenidate (2.0 or 5.0mg/kg) from PD 11 to PD 20 and testedwithmorphine on
PD 60. Data in this figure are from the same animals as presented in Fig. 5 and are
collapsed across morphine condition. aSignificantly different from rats pretreated with
saline.
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Newman–Keuls tests, pb0.05]. The higher dose of methylphenidate
(5.0 mg/kg) also caused a persistent increase in the locomotor activity
of female rats, but only on time blocks 1, 6, and 14 [Newman–Keuls
tests, pb0.05].

4. Discussion

Exposing rats to methylphenidate during the preweanling period
causes a long-term enhancement in the reward value of both
morphine and sucrose that persists into adulthood (Crawford et al.,
2007). To determine whether these methylphenidate-induced
changes are specific to reward circuitry or are a more general
phenomenon affecting multiple opioid receptor systems, we assessed
the effects of morphine on nonreward-related tasks. In general, our
results indicate that exposing rats to methylphenidate on PD 11–PD 20
cause long-term changes in opioid receptor sensitivity that affect a
broad range of behavioral and physiological responses. For example,
early methylphenidate treatment potentiated morphine-induced
paw-lick latencies and hyperthermia, while causing small, but
measurable, increases in the locomotor activity of female rats.

In terms of nociception, early methylphenidate treatment did not
affect baseline responses to thermal stimuli, although male rats did
have significantly longer paw-lick and tail-withdrawal latencies than
female rats. Sex differences in nociceptive responsiveness have been
reported before but the data are often inconsistent, with female rats
showing both increased and decreased thermal sensitivities when
compared to males (for a review, see Mogil et al., 2000). As expected,
morphine caused a dose-dependent increase in antinociception when
tested onboth the hot plate and tail immersion tasks. Themagnitude of
morphine's analgesic effects differed according to sex, because each
dose ofmorphine induced significantly greater antinociception inmale
rats. Early methylphenidate exposure potentiated the analgesic effects
of 5.0 mg/kg morphine, thus suggesting a leftward shift in the dose–
response relationship. A similar pattern of effects was not observed
when rats were treated with a higher dose of morphine (10.0 mg/kg).

Curiously, the ability of methylphenidate to enhance morphine-
induced antinociception was only observed using the hot plate task,
but not the tail immersion task. A possible reason for this difference is
that the paw-lick response is mediated by supraspinal mechanisms,
while the tail-withdrawal response is a spinal reflex (Caggiula et al.,
1995; Espejo and Mir, 1993; Le Bars et al., 2001). Spinal and
supraspinal μ-opioid receptors are pharmacologically distinct, because
the μ-opioid antagonist, naloxoanzine, blocks systemic and suprasp-
inal antinociception but not spinal antinociception (Paul et al., 1989).
In terms of the present findings, supraspinal opioid receptors may be
uniquely sensitive to the effects of early methylphenidate exposure,
thus potentially explaining why methylphenidate was able to
potentiate morphine-induced antinociception on only the hot plate
task. Alternatively, early methylphenidate treatment may affect
performance on the hot plate task by altering the sensitivity of
dopamine receptors in the periaqueductal gray (PAG) of the midbrain.
Reducing dopaminergic transmission in the PAG, via dopamine
receptor blockade or dopamine depletion, has been shown to
attenuate morphine-induced antinociception on the hot plate task
but not the tail immersion task (Flores et al., 2004).

Aswith nociception, basal rectal temperatures differed according to
sex, with female rats having higher rectal temperatures than male rats
(see also Kest et al., 2000; Quock et al., 1985). Morphine altered rectal
temperatures, but these effects were complex as the dose–response
relationship varied according to time. Specifically, 10.0 mg/kg
morphine produced greater hyperthermia after 20 min then after
100min, while 5.0mg/kgmorphine produced a slight increase in body
temperature across the two time points. In terms of body temperature,
these results suggest that higher doses of morphine (e.g., 10.0 mg/kg)
have a faster onset and offset than lower doses. In agreement with this
idea, Rawls et al. (2003) showed that hyperthermia peaked 45–60min
after treatment with 4.0 mg/kg morphine, whereas 15.0 mg/kg
morphine caused peak hyperthermia only 15–30 min after injection.
Early methylphenidate exposure did not affect basal rectal tempera-
tures, but methylphenidate did potentiate morphine-induced
hyperthermia. Once again this effect was sex-dependent, because
methylphenidate exposure enhanced the hyperthermic effects of
10.0 mg/kg morphine in only male rats.

Opioid receptor stimulation affected locomotor activity in a
characteristic manner, because morphine treatment produced an
inverted “U” shaped dose–response curve. Specifically, 2.5 and
5.0 mg/kg morphine increased locomotor activity, while 10.0 mg/kg
morphine decreased locomotion. The effects of opioid receptor
stimulation were sex-dependent, because morphine caused more
locomotor activity in female rats. The dose- and sex-dependent effects
of morphine have been reported previously (Craft et al., 2006;
Kalinichev et al., 2004; Vanderschuren et al., 1999). Similar to its
ability to potentiate morphine-induced antinociception and
hyperthermia, early methylphenidate exposure enhanced the loco-
motor activating effects of morphine in female, but not male, rats. It is
unclear why this effect was restricted to female rats, but it may be due
to sex-dependent differences in dopaminergic activity. More precisely,
morphine stimulates locomotor activity by indirectly altering thefiring
rate of nigrostriatal and mesolimbic neurons and, in this way,
increasing dopamine release in the striatum and nucleus accumbens
(Cadoni and Di Chiara, 1999; Di Chiara and Imperato, 1988;
Vanderschuren et al., 2001). These dopaminergic neurons show
enhanced responsiveness in female rats (Becker, 1999; Walker et al.,
2000), perhaps explaining why methylphenidate only potentiated
morphine-induced locomotor activity in the females.

Regardless of the behavior or physiological response being
measured, the effects of morphine often varied according to sex.
Some of these effects are obscured by sex-related differences in basal
responding, but morphine differentially affected the antinociceptive
responses and rectal temperatures of male and female rats when data
were analyzed as change from baseline. The underlying cause of these
sexdifferences is unclear but it is possible that circulating sexhormones
may have modulated the actions of morphine. Prior studies have
demonstrated that estrous phase and gonadal removal can modulate
morphine-induced nociception and locomotor activity (Bernal et al.,
2007; Craft et al., 2006; Krzanowska and Bodnar, 1999), although
inconsistent findings, especially regarding antinociception, have been
reported (Mogil et al., 2000; Peckham et al., 2005). Interestingly,
morphine-induced sex differences appear to be the result of either
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organizational effects of sex hormones or direct effects of X- or Y-linked
genes (Cicero et al., 2002; Gioiosa et al., 2008; Mogil et al., 2000).

Aswith sex, developmental stage of the animal also alters the impact
of early methylphenidate treatment. Specifically, methylphenidate
exposure during adolescence increases the rewarding effects of cocaine,
while preadolescent treatmentdecreases cocaine's rewardvalue (Achat-
Mendes et al., 2003; Brandon et al., 2001; Carlezon et al., 2003).
Nondrug-induced behaviors are also differentially affected by methyl-
phenidate depending on age at treatment onset. For example, rats
exposed to methylphenidate from PD 20–PD 35 spend less time in the
open arms of an elevated plusmaze than controls, whereas greater time
is spent in the open arms if methylphenidate was administered during
an earlier developmental period (PD 7–PD 35) (Bolaños et al., 2003,
2008; Gray et al., 2007). Given these past findings, it is very possible that
the long-term effects of early methylphenidate exposure on morphine-
induced behaviors also vary according to the developmental stage in
which the drug is given. Although the neural mechanisms responsible
for this age-dependent effect are unknown, dopamine systems undergo
substantial changes during thepostnatal period. For example, dopamine
content, dopamine transporter sites, and dopamine D1 and D2 receptor
sites increase linearly from birth and reach adult-like levels around the
fourth postnatal week (Broaddus and Bennett, 1990; Coyle and
Campochiaro, 1976; Murrin and Zeng, 1986, 1990; Rao et al., 1991). At
the time of adolescence, there is additional neural reorganization in
which D1 and D2 receptors are dramatically overproduced (Andersen et
al.,1997; Giorgi et al.,1987; Teicher et al.,1995), with dopamine receptor
numbers gradually declining to adult levels (for reviews, see Andersen,
2003; Tarazi and Baldessarini, 2000).

In general, the present results are in agreement with our hypothesis
that early methylphenidate exposure causes alterations in opioid
receptor functioning that are not limited to reward circuitry. The neural
mechanisms responsible for this effect may involve methylphenidate-
induced changes in the level of endogenous opioid peptides, coupling of
opioid receptors with their G-proteins, or opioid receptor densities.
Indeed, repeated treatment with other psychostimulants (cocaine and
methamphetamine) can alter the density and sensitivity of μ-opioid
receptors in adult rats (Chiu et al., 2006; Hammer,1989; Schroeder et al.,
2003; Unterwald et al., 1992, 1994). Regardless of the mechanism,
methylphenidate-induced changes in opioid system functioning are of
potential importance, because opioid systems also modulate affective
behavior and impulse control (Filliol et al., 2000; Ognibene et al., 2007;
Vergura et al., 2008; Waldhoer et al., 2004). For example, pretreating
very young rats with methylphenidate decreases anxiety-like behavior
when measured in adulthood (Gray et al., 2007).
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